Imperial College
London

Lecture 15

Adders and DSP Blocks

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_digital/
E-mail: p.cheung@imperial.ac.uk

PYKC 28 Nov 2017 E2.1 Digital Electronics

Lecture 15 Slide 1

Lecture Objectives

*

Understand how to add both signed and unsigned numbers

Appreciate how the delay of an adder circuit depends on the data values
that are being added together

Understand how adders are implemented on Cyclone V devices
Understand DSP Blocks in Cyclone V and its flexible multipliers

*

* o

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 2

In this last lecture of the course, | will be looking at how adder circuits work.
In particular, | will be examining the implementation of adders on the Cyclone
V FPGAs. Furthermore, since Cyclone V also contain a large number of
multipliers inside DSP blocks, | will brief explain how these could be
instantiated.

Full Adder
+ Output is a 2-bit number counting how many inputs 5 b
are high —1P sl a
+ Symmetric function of the inputs —Q .l
+ Self-dual: Invert all inputs => invert all outputs I C S
« |If kinputs high initially then 3—k high when
inverted PQCcll ¢ s
¢ Inverting all bits of an n-bit number make 000 0 0
X 32°-1-x 001/ 0 1
Note:PeQ@Cl=(PeQ)®Cl=P® (Q®Cl) 010 0 1
011 1 0
C=P-O+P-CI+0-CI 1000 1
10 1 10
S=PoQ0®CI 1710 1 0
17 1 1 17 1
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 3

N-bit adder

+ We can make an adder of arbitrary size by cascading full adder sections:

b3) T T b3
PO P1 P2 P3
—P so —P st —P s2 —P S3
Qo S— a1 S— @2 S— a3 S—
= =lQ =< 1a o —_
oud] PSR a ct&l a ¢ a cb2
+ The main reason for using 2’ s complement PO)
notation for signed numbers is that: P1 0
s -
3 S1
Signed and unsigned numbers can use Qo 0 p> S2
identical circuitry for add or subtract Qt 3 S3
Q2 Q
Q3
3
c-1 o o3 C3
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 4

The building block for an n-bit adder is a one-bit full adder. This is essentially
a component that adds THREE one-bit values together: P Q and Cl. It
produces two outputs: Sum S, and Carry C.

Note that all three inputs are symmetrical — they can be swapped without
any change in the outputs.

Further, if you invert all inputs, the outputs are also all inverted. This is
known as “self-dual”.

The Boolean equation for C and S are shown here. This is something that has
been covered from the first year.

To build a 4-bit adder from 1-bit full adders, we can connect four of these
serially as shown here. It is important to appreciate that this 4-bit adder
works for both signed and unsigned input, provided that signed numbers are
using 2’s complement representation. In other words, if you interpret
input as unsigned 4-bit numbers, then the adder produces unsigned 5-bit

output (including the carry out signal).

If you interpret the input as 2’s complement signed numbers, then the output
is correct as a 4-bit SIGNED output. (In this case, you cannot use C3 as the 5t

bit).

Adder Size Selection

¢ The number of bits needed in an adder is
determined by the range of values that can be
taken by its output

+ If we add two 4-bit numbers, the answer can LA PN =
be in the range: E;
» 0 to 30 for unsigned numbers 1 (P S0
e -16 to +14 for signed numbers 2— 4 0 S1
+ Inboth cases we need a 5-bit adder to avoid ¢ s S2
any possibility of overflow a9 23
7(;)27 ~Q i
+ We need to expand the input numbers to 5 Q3
bits. How do we do this ? 214
0 e ca [
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 5

Expanding Binary Numbers

Unsigned numbers
+Expand an unsigned number by adding the appropriate number of 0's at the
MSB end:

5 0101 00000101
13 1101 00001101

Signed numbers
+Expand a signed number by duplicating the MSB the appropriate number of
times:

5 0101 00000101
-3 1101 11111101
+This is known as sign extension

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 6

If you add two 4-bit numbers together, the inputs are unsigned, then the
output will be in the range of 0 to 30. However, if you want to use the adder
for signed number addition, the input range is -8 to +7, therefore the output
range is -16 to +14. In both cases, we would need 5-bit adder to avoid any
overflow.

For the unsigned case, you could use the carry out as the 5% output bit. For
now, let us use only the sum output, and we need a 5-bit adder.

For signed addition, we cannot use the carry out as the 5t bit. We MUST use
a 5-bit adder. So, we need expand the input numbers from 4-bti to 5-bit.
What do we do with the MSB?

For unsigned numbers, exampling a 4-bit number to an 8-bit number simply
requires adding 4 extra ‘0’ to the MSB part of the number.

For signed numbers, we need to extend to the left four sign bits in order to
preserve the signed of the number and maintain the correct value. This is
known as “sign extension”.

Shrinking Binary Numbers

Unsigned
+Can delete any number of bits from the MSB end so long as they are all 0's

Signed

+Can delete any number of bits from the MSB end so long as they are all the
same as the MSB that remains

Both Signed and Unsigned

+Can truncate or round LSB end (but will generally introduce truncation or
rounding errors)

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 7

To shrink a binary number to smaller number of bits, it is easy for unsigned
numbers — simply delete all leading ‘0’s for MSB. The value of the unsigned
number will not change.

For signed numbers, if the MSB is 0, you can delete all ‘0’ from MSB down
except the last ‘0", If the MSB is ‘1’, you can delete all ‘1’s from MSB down
except the last ‘1". In that way, you preserve the correct sign of the number.

You can also shrink the number of bits by removing unwanted LSBs through
truncation. Alternatively you can perform rounding.

Truncation is easy — to reduce an 8-bit number to 4-bit, just remove the least
significant 4-bit.

Rounding is harder, and there are various method of rounding that can be
used. The simplest method in the case of 8-bit rounded to 4-bits is to add
8’b00001000 to the number, than truncate the bottom 4-bit. Basically, you
add half of the LSB of the final number to the original number before
chopping off the lower bits. This is the same as how we round with decimal
numbers.

Adding Unsigned Numbers

+ To avoid overflow, we use a 5-bit adder: - T
I
+ The MSB stage is performing the addition: 0 + 0 P2 p
P3 S0
+C3 0 i
+ Therefore S4 is always equals C3 and C4 0—4 s S2
always equals 0 K 1 s3
at S4
Q2 4
PO 0 z Q3 a
- S0
P37 3 0 —s1 0 C__1 cl c4 ﬂ
Qo > S2
ar1° s s3
Q2 Q S4
S Y + We can use a 4-bit adder with C3 as
1 c3 an answer bit for unsigned adder
0 —cl c3
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 8

In order to avoid overflow when adding two 4-bit numbers together, we need
to use a 5-bit adder. For unsigned add, we zero extend the input sto 5-bit and
then use a 5-bit adder to produce S4:0 as shwon here.

Of course, we could have used the 4-bit adder and use the carry out C3 as S4.

Adding Signed Numbers

+ To avoid overflow, we use a 5-bit adder:

z
+ This is different from the unsigned case ?1]7 0
because P4 and Q4 are no longer constants.)
We cannot simplify this circuit by removingthe w5 ——1 (P)
MSB stage T A 0 s1
+ If P and Q have different signs then S4 will not g T 2§
equal C3 ar |’ sa
Q2 Q 4
e.g. P=0000, Q=1111 Q3
Unsigned P+Q=01111, Signed P+Q=11111 4
0 e | X
+ Some minor simplifications are possible:
o If the C4 output is not required, the circuitry that generates it can be
removed
e S4 can be generated directly from P3, Q3 and C3 which reduces the
circuitry needed for the last stage
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 9
To build a 4-bit signed adder WITHOUT overflow, we need to first extend the
input to 5 bits with sign extension sa shown here. Then use a 5-bit adder
circuit to produce a 5-bit signed result.
9

Adder Propagation Delay

))) 3

P1 P2 P3
P so —P s1 —P S2 —
S— a1 S—— @2 S—— @3

P
583

Q —a —Q —a 7
c

EIE

co c1 C2

Cl Cc ci C ci C Cl S4
— —

POTbCO COT>C1 Cl———C2 C2———»S3

+ Delays within each stage (in gate delays):
P,QCl=2>S=3 PQCl2>C=2

¢ Worst-case delay is:

PO>CO>C1=>C2=>S3=3%x2+3=9

¢ Note: We also have Q0 =» S3=9and C-1=>» S3=9

+ For an N-bit adder, the worst delay is (N-1) X2 + 3 = 2N+1

+ Example of worst case delay:
o |Initially: P3:0=0000, Q3:0=1111 => S4:0=01111
+ Change to: P3:0=0001, Q3:0=1111 => S4:0=10000

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 10

Let us consider the propagation delay through a 4-bit adder. The worst case
path is from PO or QO input, then pass through the carry chain to the MSB
sum output.

Assuming the gate delay to Cis 2 andto S is 3, then the worst case delay is 9.

This is called a ripple carry adder because the carry signal has to propagate all
the way from the LSB stage to the MSB stage.

An example scenario for the worst case propagation delay is shown here. If
initially P=4’b0000 and Q=4'b1111, the S=5'b10000.

Now if P changes to 4’b0001, then this ‘1’ in the LSB is propagated all the way
to S4. The worst-case path is exercised.

10

Delays are Data-Dependent

"+ To determine the delay of a circuit, we need to specify:
1. The circuit
2. The initial value of all the inputs
3. Which of the inputs changes

+ Example: What is the propagation delay A>Q ?
A

: Ly
e T R
+ Answer 1 (B=0): 8 r 42,—

o |Initially: A=0, B=0 => X=1, Y=0, Z=0, Q=0

o Then: Af => YA => QA 2 gate delays
+ Answer 2 (B=1):

o |[nitially: A=0, B=1 => X=1, Y=0, Z=1, Q=1

o Then: A => X¥ =>Z¥ => Q¥ 3 gate delays

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 11

Worst-Case Delays

+ We are normally interested only in the worst-case delay from a change in any
input to any of the outputs.

+ The worst-case delay determines the maximum clock speed in a synchronous
circuit: ~ cLock _

Logic

1

tp+tg+ts<T CLOCK
w I :

« Since the clock speed mustbe X ——| : :
chosen to ensure that the M f f I_ :
circuit always works, it is only z : : § : I
the worst-case logic delay that : : : :
matters. time 0 tp tp+tg T

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 12
12

you could put onto this one chip 2,000 32-bit binary adder circuits!
Cyclone V’s Adaptive Logic Module (ALM)

+ Let us revisit the Cyclone V logic element, the ALM (Lecture 2 slide 10)
+ The Cyclone V chip on the DE1 board (5CSEMA5F31C6) has 32,000 ALMs.

+ As can be seen here, the ALM
has a flexible LUT for FPGA Fabric - ALM
combinational logic

+ It also has TWO dedicated full W4 \ y

modes:
+ Normal mode
+ Extended LUT mode
+ Arithmetic mode
+ Shared arithmetic mode

® N oW B W N -

Yy
]
vy

adders A Full >

f, Adder Ly

+ Each ALM can be configured to Adaptive L
operate in one of four different wr

.

S

p.

Full
Adder
Cyclone V Handbook Vol 1 p.1-8

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 13

A\
m
m
m
m
—

We have already discussed the inside structure of the FPGA in Lecture 2.
Here is a reminder.

The Altera Cyclone V FPGA has a more advanced programmable logic
element than the simple 4-input LUT that we have considered up to now.
The call this a Adaptive Logic Module or ALM.

An ALM can take up to 8 Boolean input signals and produces four outputs
with or without a register. Additionally, each ALM also can perform the
function of a 2-bit binary full adder. This is what interest us most for this
lecture.

As a user of the Cyclone V FPGA, you don’t actually need to worry too much
about exactly how the ALM is configured to implement your design. The CAD
software will take care of the mapping between your design and the physical
implementation using the ALMs. It is however useful to know that as the
technology evolves, more and more complicated programmable logic
elements are being developed by the manufacturers in order to improve the
area utilization of the FPGAs.

The Cyclone V on the DE1-SOC board has 32,000 ALMs, which could be
estimated to be equivalent to 85K+ the old style LEs. Putting this in context,

13

ALM’s Arithmetic Mode

¢ The ALM in arithmetic mode uses two sets of TWO 4-inputs and two dedicated 1-bit full

adders.

+ The full adder can add the
output of the two 4-input
LUT (which can be
performing some logic
functions).

+ There is also a dedicated
carry chain, which allows
fast ripple carry function.

aany_in

F = jl B =i

adder regl | To Generalor
| tocal Routing

datae) ——]
dataf0
datac 4-input
datab wr
dataa
f—— &nput
datad wr
datael
be—o wr
datafl

he
Hnpat J reg2

J— |
Iy
carry_out

Cyclone V Handbook Vol 1 p.1-9

PYKC 28 Nov 2017

E2.1 Digital Electronics

Lecture 15 Slide 14

14

How NOT to specify an adder

You could specify a full adder in gate form
THIS IS BAD for FPGA's because it will not
exploit the internal fast carry chain
+ Always use one of the following:
« Verilog or VHDL specification with ‘+' operator [znput clk:

« Altera (or Xilinx) adder or arithmetic block (e.g.
Megafunction or Coregen)

module add32v (a, b, sum, clk):

[parameter SIZE=32;

input [SIZE-1:0] a,b;
output [SIZE-1:0] sum;
reg [SIZE-1:0] reg_a, reg_b;
reg [SIZE-1:0] sum;

always @ (posedge clk)
begin

reg_a <= a;

reg_b <= b;

sum <=reg_a + reg b;
end

endmodule

PYKC 28 Nov 2017 E2.1 Digital Electronics

Lecture 15 Slide 15

Given that the FPGA has special adder mode,

you should never specify your

adder as individual full adder circuits connected together. The synthesis
system WILL NOT be able to exploit the dedicated adder mode configuration

shown in the previous slide. Instead use the *

+ operator in Verilog as shown

here. Itis simpler and will produce a very fast adder.

15

How fast are adders in Cyclone lll

The Verilog code produces

the following circuit (obtained ™' = ‘
via Tools > Netlist viewers >

RTL Viewer)

Delay obtained after o210 D>
compiling hardware
(using 85 degree C, slowest

timing)
Each adder bit adds a delay Clock Period (ns)
of around 57ps 600 -
Clock to Q delay + setup s [d=0057n+18 (”5)/|//
time = 1.8ns 4.00
3.00
200 Jo=7
1.00
N bits
0.00
0 10 20 30 40 S0 60 70
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 16

Cyclone V DSP Block (1)

+ Cyclone V has embedded DSP blocks designed for fast DSP functions.

¢ Each DSP block consists ¢~

a8

S—

How fast are adders within a typical FPGA? Here is an n-bit adder circuit
sandwiched between registers. The plot is based on a Cyclone Il FPGA. (I
don’t have the data for Cyclone V.)

We can use the timing analyzer to estimate how fast we can clock this circuit
without error as the number of bits n is increased from 1 to 64. The
equation of the red fitted line. This shows that each adder bit adds around
57ps delay. In addition, there is a 1.8 ns delay from clock to Q + register
setup time. | expect the timing for the Cyclone V devices to be faster.

16

oo

w10

+ Input register bank 13y

+ Pre-adder -
+ Internal coefficient e
memory
¢ Multipliers aun T v . - ; o
. Addef e 8 1 t :_ 1
170 “t = [.
¢ Accumulator P i | H
+ Systolic registers R T e
(don't’ worry about ot | || i
this for now)) tesane]
. o I B] -
+ Double accumulation s o fee i -
register e ‘ i it Pp—
+ Output register bank ™" =71 | 7 —
oeoent
— Cyclone V Handbook Vol 1 p.3-5
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 17

Older FPGA (s.g. Cyclone Ill) has embedded multipliers to make
implementation of digital signal processing algorithms more efficient on the
FPGA. Cyclone V has DSP support far superior to just simple configurable
multipliers.

The DSP blocks on the Cyclone V can be used for a combination of different
functions. It can do multiplication of different precision and also to perform
multiply-accumulate function.

Accumulator is an adder whose output is used as one of the two inputs of
the adder on the next clock cycle. Therefore an accumulator usually only has
one input, whose value get “accumulated” cycle-by-cycle.

The DSP block also has internal storage to store a constant value. Typically
this is a filter coefficient for implementing a finite-impulse response (FIR)
filter. Detail of how to use DSP block to implement one tap (or one stage) of
a FIR filter is beyond the scope of this course. Those interested can read
Cyclone V Devices Handbook, Vol. 1, p. 3-17.

17

Cyclone V DSP Block (2)

For this lecture, we will only focus on the multiplier function.

For our chip, there are 87 DSP blocks, each block can be configured as three 9x9, or
two 18 x18, or one 27 x 27 multiplier(s).

Each multiplier output could feed an adder, or an adder with output feedback to the input
of the input via a register (which makes it an accumulator).

We are using such a multiplier in Part IV of the VERI experiment.
Independent Input and Output
) 18x18 18x18

Variable- Multiplications Operator

precision Multiplier | Multiplier Adder
9x9 18x18 27 x27 Adder Summed with

DSP Block Mode 36 bit Input

Multiplier | Multipl Multiplier

A2 36 108 72 36 36 36

Cyclone V | 84 252 . 168 [84 84
SE A5 87 261 174 87 87 87
A » < .$. 224 | 112 | 12 I 112

Cyclone V Handbook Vol 1 p.3-3

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 18

For this lecture, we concentrate on the configurable multipliers in the DSP
block. Each DSP block can be configured as three 9 x 9 multipliers. This is
particularly useful for real-time video processing since each pixel values are
often represented as an 8-bit unsigned value (or 3 x 8 bit unsigned number if
we are using colour).

Alternatively, each block can provide TWO 18 x 18 bit, or one 27 x27 bit
multiplier(s). Of course if you need lower number of bits (say 14 x 14), you
can always either zero-extend, or sign-extend the operands to fit and use the
18 x 18 multiplier.

Each multiplier can also be configured to operate with the adder or the
accumulator at the output.

It is important to understand that when you multiply two N x M bits unsigned
numbers together, you get a product which is N+M bits. The same also
applies if you multiply one signed and one unsigned number together. You
can try this yourself for two four-bit numbers!

However, if you multiply two signed 2’s complement numbers together, you
get a product that is only N+M-1 bits. The top two-bits are always the same
and they both provide the sign of the product value (i.e. you get two identical
sign bits in the product). Again try this yourself with two 4-bit signed
multiplication.

18

Cyclone V DSP Block (3)

For example, if we the DSP block in the 9x9 multiplier mode, the function of the DSP
block is shown below.

Three pairs of 9-bit data are packed into the ax and ay input ports (27 bits).
The three 18-bit products are packed into 56-bit Results.

Variable-Precision DSP Block
Multiplier
27
ayly2,y1,y0] — = =
= = 54
,% X L > Result[53..0]
77 g g (p2,p1, p0)
ax[x2, x1,x0] [— _E‘ .§
3
Cyclone V Handbook Vol 1 p.3-12
PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 19

If you configure a DSP block to be THREE 9 x 9 multipliers, the two input
operands ax and ay are bit-cascade to form a 27 bit input values to the DSP
block as shown above. Similar, the three products are provided as three 18-
bit RESULT value as a 54-bit value.

19

Using DSP Blocks in Quartus

+ Quartus software includes IP cores that you can use 4 BoscFunctees
to control the operating modes of DSP block’s o p
multipliers.

+ For Part 3 and 4 of VERI, you may need a simple
constant multiplier.

¢ Use the IP Catalog system and select LPM_MULT for
the configurable multiplier from Library -> Basic
Functions -> Arithmetic

multiplier

PYKC 28 Nov 2017 E2.1 Digital Electronics Lecture 15 Slide 20

To instantiate multipliers in a Cyclone V, we can use the IP Catalog tool under
Quartus. Multiplier is shown under Library > Basic Functions > Arithmetic
category. You should choose LPM_MULT. A dialogue form will pop up. You
can then create the type of multiplier you need for your design.

Shown above is a 10 bit x 14 bit multiplier used in ex15 in Part 3 of VERI. The
10-bit input is the frequency value specified by the switches or the ADC, and
the 14-bit is the multiplying constant 14’d10000.

20

